<code id='DBDAAF509C'></code><style id='DBDAAF509C'></style>
    • <acronym id='DBDAAF509C'></acronym>
      <center id='DBDAAF509C'><center id='DBDAAF509C'><tfoot id='DBDAAF509C'></tfoot></center><abbr id='DBDAAF509C'><dir id='DBDAAF509C'><tfoot id='DBDAAF509C'></tfoot><noframes id='DBDAAF509C'>

    • <optgroup id='DBDAAF509C'><strike id='DBDAAF509C'><sup id='DBDAAF509C'></sup></strike><code id='DBDAAF509C'></code></optgroup>
        1. <b id='DBDAAF509C'><label id='DBDAAF509C'><select id='DBDAAF509C'><dt id='DBDAAF509C'><span id='DBDAAF509C'></span></dt></select></label></b><u id='DBDAAF509C'></u>
          <i id='DBDAAF509C'><strike id='DBDAAF509C'><tt id='DBDAAF509C'><pre id='DBDAAF509C'></pre></tt></strike></i>

          Home / explore / hotspot

          hotspot


          hotspot

          author:hotspot    Page View:7
          A gene-edited Yucatan minipig. -- health coverage from STAT
          A gene-edited Yucatan minipig created by eGenesis. Courtesy Liz Linder/eGenesis

          For three days in December, an ICU room at the Hospital of the University of Pennsylvania bore witness to the first-ever merging of two powerful new technologies poised to change the future of transplant medicine.

          On a gurney, a brain-dead patient lay connected to a whirring Rube Goldberg-esque machine: a tangle of tubes and siphons on wheels. From a cannula on one end, blood from the patient entered, was pumped full of oxygen and other nutrients, then pushed into a cozy, temperature-controlled chamber containing a liver — one that until very recently had belonged to a CRISPR-edited pig — before being returned to the patient.

          advertisement

          The experiment, designed to test whether a genetically engineered porcine liver kept alive in a box could support the circulatory system of a human, was a resounding success, the research team said Thursday.

          Get unlimited access to award-winning journalism and exclusive events.

          Subscribe Log In